z-logo
Premium
An alternative parameterization of Bayesian logistic hierarchical models for mixed treatment comparisons
Author(s) -
Pechlivanoglou Petros,
Abegaz Fentaw,
Postma Maarten J,
Wit Ernst
Publication year - 2015
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.1688
Subject(s) - randomized controlled trial , bayesian probability , mixed model , randomization , clinical trial , computer science , medicine , inference , logistic regression , statistics , mathematics , machine learning , artificial intelligence
Mixed treatment comparison (MTC) models rely on estimates of relative effectiveness from randomized clinical trials so as to respect randomization across treatment arms. This approach could potentially be simplified by an alternative parameterization of the way effectiveness is modeled. We introduce a treatment‐based parameterization of the MTC model that estimates outcomes on both the study and treatment levels. We compare the proposed model to the commonly used MTC models using a simulation study as well as three randomized clinical trial datasets from published systematic reviews comparing (i) treatments on bleeding after cirrhosis, (ii) the impact of antihypertensive drugs in diabetes mellitus, and (iii) smoking cessation strategies. The simulation results suggest similar or sometimes better performance of the treatment‐based MTC model. Moreover, from the real data analyses, little differences were observed on the inference extracted from both models. Overall, our proposed MTC approach performed as good, or better, than the commonly applied indirect and MTC models and is simpler, fast, and easier to implement in standard statistical software. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here