z-logo
Premium
The statistician's role in the prevention of missing data
Author(s) -
Hughes Sara,
Harris Julia,
Flack Nancy,
Cuffe Robert L.
Publication year - 2012
Publication title -
pharmaceutical statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 38
eISSN - 1539-1612
pISSN - 1539-1604
DOI - 10.1002/pst.1528
Subject(s) - statistician , missing data , clinical trial , dropout (neural networks) , sample size determination , quality (philosophy) , clarity , medicine , research design , data quality , data collection , computer science , operations management , statistics , engineering , metric (unit) , biochemistry , chemistry , epistemology , pathology , machine learning , philosophy , mathematics
Considerable statistical research has been performed in recent years to develop sophisticated statistical methods for handling missing data and dropouts in the analysis of clinical trial data. However, if statisticians and other study team members proactively set out at the trial initiation stage to assess the impact of missing data and investigate ways to reduce dropouts, there is considerable potential to improve the clarity and quality of trial results and also increase efficiency. This paper presents a Human Immunodeficiency Virus (HIV) case study where statisticians led a project to reduce dropouts. The first step was to perform a pooled analysis of past HIV trials investigating which patient subgroups are more likely to drop out. The second step was to educate internal and external trial staff at all levels about the patient types more likely to dropout, and the impact this has on data quality and sample sizes required. The final step was to work collaboratively with clinical trial teams to create proactive plans regarding focused retention efforts, identifying ways to increase retention particularly in patients most at risk. It is acknowledged that identifying the specific impact of new patient retention efforts/tools is difficult because patient retention can be influenced by overall study design, investigational product tolerability profile, current standard of care and treatment access for the disease under study, which may vary over time. However, the implementation of new retention strategies and efforts within clinical trial teams attests to the influence of the analyses described in this case study. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here