z-logo
Premium
Deposition of quaternary sputtered CIGS nanorods via glancing angle deposition
Author(s) -
Brozak Matthew,
Cansizoglu Hilal,
Karabacak Tansel
Publication year - 2017
Publication title -
physica status solidi (rrl) – rapid research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 68
eISSN - 1862-6270
pISSN - 1862-6254
DOI - 10.1002/pssr.201600326
Subject(s) - nanorod , materials science , copper indium gallium selenide solar cells , optoelectronics , thin film , band gap , deposition (geology) , chemical bath deposition , absorption (acoustics) , photoconductivity , sputtering , sputter deposition , semiconductor , nanotechnology , solar cell , composite material , paleontology , sediment , biology
Nanostructured materials have become an attractive alternative to their thin film and bulk counterparts in photovoltaic and photoconductivity research. This is mainly attributed to their superior optical and electrical properties. Light trapping in vertically aligned nanostructures results in high optical absorption and provides enhanced carrier collection by utilizing a fully depleted p–n‐junction between the anode and cathode via an isolated ”capping” construction. The combination of these two features can potentially lead to the development of high efficiency nanostructured devices including solar cells, photodiodes, and photodetectors. Optical absorption proper ties of nanorod arrays of CuIn x Ga 1– x Se 2 (CIGS), a p‐type semiconductor with a wide band gap ranging from 1.0 eV to 1.7 eV, are compared to their thin film counterpart. Utilizing an RF sputtering system, a quaternary target, and glancing angle deposition (GLAD) technique, vertical arrays of CIGS nanorods were fabricated while conventional films were fabricated by normal incidence deposition. Scanning electron microscopy (SEM) images indicated a successful growth of CIGS nanorods. Optical absorption was found to be strongly altered by the presence of the nanorod structures through spectroscopic reflectometry. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here