Premium
Theoretical investigation on the passivation layer with linearly graded bandgap for the amorphous/crystalline silicon heterojunction solar cell
Author(s) -
Zhao Lei,
Wang Guanghong,
Diao Hongwei,
Wang Wenjing
Publication year - 2016
Publication title -
physica status solidi (rrl) – rapid research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 68
eISSN - 1862-6270
pISSN - 1862-6254
DOI - 10.1002/pssr.201600246
Subject(s) - passivation , materials science , optoelectronics , solar cell , band gap , crystalline silicon , amorphous silicon , layer (electronics) , amorphous solid , heterojunction , silicon , common emitter , doping , nanotechnology , chemistry , crystallography
Passivation layer with linearly graded bandgap (LGB) was proposed to improve the performance of amorphous/crystalline silicon heterojunction (SHJ) solar cell by eliminating the large abrupt energy band uncontinuity at the a‐Si:H/c‐Si interface. Theoretical investigation on the a‐Si:H(p)/the LGB passivation layer(i)/c‐Si(n)/a‐Si:H(i)/a‐Si:H(n + ) solar cell via AFORS‐HET simulation show that such LGB passivation layer could improve the solar cell efficiency ( η ) by enhancing the fill factor (FF) greatly, especially when the a‐Si:H(p) emitter was not efficiently doped and the passivation layer was relatively thick. But gap defects in the LGB passivation layer could make the improvement discounted due to the open‐circuit voltage ( V OC ) decrease induced by recombination. To overcome this, it was quite effective to keep the gap defects away from the middle of the bandgap by widening the minimum bandgap of the LGB passivation layer to be a little larger than that of the c‐Si base. The underlying mechanisms were analysed in detail. How to achieve the LGB passivation layer experimentally was also discussed. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)