Premium
Local structure around Zn and Ga in solution‐processed In–Ga–Zn–O and implications for electronic properties
Author(s) -
Revenant Christine,
Benwadih Mohammed,
Proux Olivier
Publication year - 2015
Publication title -
physica status solidi (rrl) – rapid research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 68
eISSN - 1862-6270
pISSN - 1862-6254
DOI - 10.1002/pssr.201510322
Subject(s) - nanoclusters , gallium , amorphous solid , annealing (glass) , materials science , crystallography , zinc , electronic structure , cluster (spacecraft) , chemistry , nanotechnology , metallurgy , computational chemistry , computer science , programming language
We study by X‐ray absorption spectroscopy the local structure around Zn and Ga in solution‐processed In–Ga–Zn–O thin films as a function of thermal annealing. Zn and Ga environments are amorphous up to 450 °C. At 200 °C and 450 °C, the Ga atoms are in a β‐Ga 2 O 3 like structure, mostly tetrahedral gallium oxide phase. Above 300 °C, the Zn atoms are in a tetrahedral ZnO phase for atoms inside the nanoclusters. The observed formation of the inorganic structure above 300 °C may be correlated to the rise of the mobility for IGZO TFTs. The Zn atoms localized at the nanocluster boundary are undercoordinated with O. Such ZnO cluster boundary could be responsible for electronic defect levels. Such defect levels were put in evidence in the upper half of the band gap. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)