z-logo
Premium
High‐performance a‐Si 1– x O x :H/c‐Si heterojunction solar cells realized by the a‐Si:H/a‐Si 1– x O x :H stack buffer layer
Author(s) -
Zhang He,
Nakada Kazuyoshi,
Miyajima Shinsuke,
Konagai Makoto
Publication year - 2015
Publication title -
physica status solidi (rrl) – rapid research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 68
eISSN - 1862-6270
pISSN - 1862-6254
DOI - 10.1002/pssr.201409546
Subject(s) - materials science , silicon , amorphous solid , layer (electronics) , wafer , amorphous silicon , microcrystalline , stack (abstract data type) , heterojunction , analytical chemistry (journal) , optoelectronics , thin film , solar cell , common emitter , crystalline silicon , nanotechnology , crystallography , chemistry , chromatography , computer science , programming language
We used amorphous silicon oxide (a‐Si 1– x O x :H) and microcrystalline silicon oxide (µc‐Si 1– x O x :H) as buffer layer and p‐type emitter layer, respectively, in n‐type silicon hetero‐junction (SHJ) solar cells. We proposed to insert a thin (2 nm) intrinsic amorphous silicon (a‐Si:H) thin film between the thin (2.5 nm) a‐Si 1– x O x :H buffer layer and the p‐layer to form a stack buffer layer of a‐Si:H/a‐Si 1– x O x :H. As a result, a high open‐circuit voltage ( V OC ) and a high fill factor (FF) were obtained at the same time. Finally, a high efficiency of 19.0% ( J SC = 33.46 mA/cm 2 , V OC = 738 mV, FF = 77.0%) was achieved on a 100 μm thick polished wafer using the stack buffer layer.(© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom