Premium
Hybrid polymer/inorganic nanoparticle blended ternary solar cells
Author(s) -
Yoon Seokhyun,
Heo Seung Jin,
Kim Hyun Jae
Publication year - 2013
Publication title -
physica status solidi (rrl) – rapid research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 68
eISSN - 1862-6270
pISSN - 1862-6254
DOI - 10.1002/pssr.201307157
Subject(s) - materials science , hybrid solar cell , ternary operation , energy conversion efficiency , active layer , nanoparticle , polymer solar cell , chemical engineering , organic solar cell , hybrid material , solar cell , absorption (acoustics) , polymer , nanotechnology , optoelectronics , layer (electronics) , composite material , computer science , engineering , programming language , thin film transistor
Hybrid polymer/inorganic nanoparticle blended ternary solar cells are reported. These solar cells have an active layer consisting of PbS colloidal quantum dots (CQDs), poly (3‐hexylthiophene) (P3HT), and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). Power conversion efficiency (PCE) was improved by incorporating PbS CQDs in the active layer of P3HT:PCBM‐based organic solar cells. As the concentration of PbS CQDs in the hybrid solar cells was increased, PCE was also increased. This improvement resulted from improved charge transfer and also extended light absorption into the near‐infrared. The PCE of the hybrid solar cells was 47% higher than that for reference organic solar cells on average under air mass 1.5 global illumination. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)