Premium
Defect‐band photoluminescence imaging on multi‐crystalline silicon wafers
Author(s) -
Yan Fei,
Johnston Steve,
Zaunbrecher Katherine,
AlJassim Mowafak,
Sidelkheir Omar,
Ounadjela Kamel
Publication year - 2012
Publication title -
physica status solidi (rrl) – rapid research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 68
eISSN - 1862-6270
pISSN - 1862-6254
DOI - 10.1002/pssr.201206068
Subject(s) - wafer , photoluminescence , materials science , indium , optoelectronics , silicon , gallium arsenide , optics , physics
Defect‐band emission photoluminescence (PL) imaging with an indium‐gallium‐arsenide (InGaAs) camera was applied to multi‐crystalline silicon (mc‐Si) wafers, which were taken from different heights of different Si bricks. Neighboring wafers were picked at six different processing steps, from as‐cut to post‐metallization. By using different cut‐off filters, we were able to separate the band‐to‐band emission images from the defect‐band emission images. On the defect‐band emission images, the bright regions that originate from extend‐ ed defects were extracted from the PL images. The area fraction percentage of these regions at various processing stages shows a correlation with the final cell electrical parameters. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)