z-logo
Premium
Study of detached back reflector designs for thin‐film silicon solar cells
Author(s) -
Moulin Etienne,
Paetzold Ulrich Wilhelm,
Kirchhoff Joachim,
Bauer Andreas,
Carius Reinhard
Publication year - 2012
Publication title -
physica status solidi (rrl) – rapid research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 68
eISSN - 1862-6270
pISSN - 1862-6254
DOI - 10.1002/pssr.201105463
Subject(s) - reflector (photography) , materials science , dielectric , optoelectronics , silicon , refractive index , electrical conductor , optics , plasmonic solar cell , layer (electronics) , solar cell , corner reflector , nanotechnology , composite material , monocrystalline silicon , light source , physics
We present a precise and flexible method to investigate the impact of diverse detached reflector designs on the optical response of p–i–n thin‐film silicon solar cells. In this study, the term detached reflectors refers to back reflectors that are separated from the silicon layers by an intermediate rear dielectric of several micrometers. Based on the utilization of a highly conductive n‐doped layer and a local electrical contact scheme, the method allows the use of non‐conductive rear dielectrics such as air or transparent liquids. With this approach, diverse combinations of back reflector and rear dielectric can be placed behind the same solar cell, providing a direct evaluation of their impact on the device performance. We demonstrate the positive effect of a rear dielectric of low refractive index on the light trapping and compare the performance of solar cells with an air/Ag and a standard ZnO/Ag back reflector design. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here