z-logo
Premium
ZnO nanorods–polymer hybrid white light emitting diode grown on a disposable paper substrate
Author(s) -
Amin G.,
Zaman S.,
Zainelabdin A.,
Nur O.,
Willander M.
Publication year - 2011
Publication title -
physica status solidi (rrl) – rapid research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 68
eISSN - 1862-6270
pISSN - 1862-6254
DOI - 10.1002/pssr.201004446
Subject(s) - electroluminescence , materials science , optoelectronics , nanorod , light emitting diode , diode , substrate (aquarium) , color temperature , color rendering index , polymer substrate , fabrication , polymer , layer (electronics) , active layer , nanotechnology , composite material , medicine , alternative medicine , pathology , geology , thin film transistor , oceanography
We demonstrate intrinsic white light emission from hybrid light emitting diodes fabricated using an inorganic–organic hybrid junction grown at 50 °C on a paper substrate. Cyclotene was first spin coated on the entire substrate to act as a surface barrier layer for water and other nutrient solutions. The active area of the fabricated light emitting diode (LED) consists of zinc oxide nanorods (ZnO NRs) and a poly(9,9‐dioctylfluorene) (PFO) conducting polymer layer. The fabricated LED shows clear rectifying behavior and a broad band electroluminescence (EL) peak covering the whole visible spectrum range from 420 nm to 780 nm. The color rendering index (CRI) was calculated to be 94 and the correlated color temperature (CCT) of the LED was 3660 K. The low process temperature and procedure in this work enables the use of paper substrate for the fabrication of low cost ZnO–polymer white LEDs for applications requiring flexible/disposable electronic devices. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here