z-logo
Premium
Transparent, flexible and low‐resistive precision fabric electrode for organic solar cells
Author(s) -
Castro Fernando A.,
Chabrecek Peter,
Hany Roland,
Nüesch Frank
Publication year - 2009
Publication title -
physica status solidi (rrl) – rapid research letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.786
H-Index - 68
eISSN - 1862-6270
pISSN - 1862-6254
DOI - 10.1002/pssr.200903276
Subject(s) - electrode , materials science , ohmic contact , optoelectronics , organic solar cell , resistive touchscreen , transmittance , roll to roll processing , solar cell , electrical conductor , organic semiconductor , nanotechnology , composite material , electrical engineering , chemistry , polymer , layer (electronics) , engineering
We report the use of conducting precision fabrics as transparent and flexible electrode for organic semiconductor‐based thin film devices. Precision fabrics have well‐defined mesh openings, excellent flexibility and are fabricated by high‐throughput roll‐to‐roll manufacturing. Optimized fabrics reached light transmittance over 95% throughout the visible and near infrared spectra. A significant part of the transmitted light is scattered, which is particularly advantageous for solar cell applications. Surface resistivity is as low as ∼3 Ohms/square, which decreases Ohmic losses when scaling up to large area devices. We demonstrate that solar cells fabricated onto these electrodes show very similar characteristics to those prepared on ITO. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here