
Cover Picture: Phys. Status Solidi C 7–9/2016
Publication year - 2016
Publication title -
physica status solidi (c)
Language(s) - English
Resource type - Reports
SCImago Journal Rank - 0.21
H-Index - 46
eISSN - 1610-1642
pISSN - 1862-6351
DOI - 10.1002/pssc.201670128
Subject(s) - polypyrrole , cover (algebra) , materials science , oxidizing agent , nanotechnology , chemical vapor deposition , electroluminescence , doping , heterojunction , polymer , optoelectronics , layer (electronics) , composite material , chemistry , polymerization , mechanical engineering , organic chemistry , engineering
In this work, polycrystalline n‐doped ZnO layers and n‐doped ZnO nanowires are coated with the p‐doped organic polymers polypyrrole and PEDOT by using oxidative chemical vapor deposition (oCVD). The goal of S. Bley and coworkers (pp. 614–617) is to form hybrid hetero‐junctions for developing efficient and low‐cost optoelectronic devices for applications such as LEDs and solar cells, and to show that oCVD is a versatile technique for the fabrication of inorganic/organic core–shell structures. The structural, electrical, and optical properties of polymer‐coated ZnO structures have been investigated by SEM, TSEM, EDX, electrical, and PL measurements. SEM and electrical measurements on the polypyrrole‐coated ZnO layers show that a de‐creasing amount of the used oxidizing agent (FeCl 3 ) from 0.3 g to 0.1 g leads to thin and homogeneous coating which increases the quality of the formed pn‐heterojunction. Structural and optical investigations of the coated ZnO nanowires show that a thin and conformal polymer coating of the nanowires is achieved by using 0.1 g FeCl 3 without affecting the general optical properties of ZnO. Cl doping of the polymer shell is confirmed by EDX measurements.