Premium
Phonon Properties of a Three‐Component Fibonacci Chain
Author(s) -
Hu A.,
Yang F.,
Jiang S. S.
Publication year - 1993
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.2221780112
Subject(s) - fibonacci number , eigenvalues and eigenvectors , chain (unit) , phonon , transfer matrix , scaling , periodic boundary conditions , transfer matrix method (optics) , component (thermodynamics) , boundary value problem , matrix (chemical analysis) , physics , condensed matter physics , spectrum (functional analysis) , mathematics , quantum mechanics , materials science , geometry , combinatorics , computer science , composite material , computer vision
Through the transfer matrix method the phonon properties of a three‐component Fibonacci chain are studied. The eigenfrequencies and the eigenstates are computed using a finite quasi‐periodic chain and periodic boundary conditions. Computed results show that not only the scaling index of the phonon spectrum, but also the eigenstates depend on the frequency ω.