Premium
Atomic configuration of a ½ 〈111〉 screw dislocation in pure Mo and in Mo containing He interstitials
Author(s) -
van Heugten W. F. W. M.,
Caspers L. M.,
de Hosson J. Th. M.
Publication year - 1979
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.2220920123
Subject(s) - burgers vector , dislocation , helium , materials science , stacking fault , stacking fault energy , peierls stress , condensed matter physics , atom (system on chip) , interatomic potential , molybdenum , atomic physics , anisotropy , helium atom , binding energy , dislocation creep , crystallography , molecular physics , physics , molecular dynamics , chemistry , computational chemistry , metallurgy , quantum mechanics , computer science , embedded system
Abstract The atomic configuration around a screw dislocation with ½ 〈111〉 Burgers vector is calculated using two different sets of interatomic potentials for Mo. The boundary conditions are given by anisotropic elasticity theory. A narrow dislocation without a distinct stacking fault region results. Two different molybdenum‐helium potentials are used to calculate the positions with maximum energy gain for helium atoms near the ½ 〈111〉 screw dislocation in Mo. The strongest binding energy of the helium atom of ≈ 1.6 eV is found for the dilatational sink close to the dislocation line. The present calculations confirm earlier results on the interaction between a helium atom and a ½ 〈111〉 {110} edge dislocation that elasticity theory gives a reasonable description far away from the dislocation core but fails in the neighbourhood of the core region.