Premium
Electrical conductivity in the strong‐coupling non‐half‐filled band Hubbard model
Author(s) -
Ihle D.
Publication year - 1978
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.2220860133
Subject(s) - condensed matter physics , hubbard model , electrical resistivity and conductivity , conductivity , singularity , discontinuity (linguistics) , coulomb , coupling (piping) , physics , electronic band structure , electron , van hove singularity , materials science , fermi level , quantum mechanics , mathematics , mathematical analysis , superconductivity , metallurgy
The chemical potential μ and the electrical dc conductivity σ in the one‐dimensional Hubbard model in the strong‐coupling region U ≫ t ( U intra‐atomic Coulomb energy, – t nearest‐neighbour hopping integral) are calculated as functions of temperature and electron density n . In the non‐half‐filled band case n ≠ 1 the Bari‐Kaplan approximation lim (σ/ t 2 ) is shown to yield an unphysical singularity in the dc conductivity at T = 0 which is connected with the discontinuity of the zero‐temperature chemical potential at n = 1. An improved calculation for n ≠ 1 going beyond the Bari‐Kaplan approximation (i.e. taking into account the band terms in μ and σ/ t 2 ) yields a finite zero‐temperature conductivity which is proportional to the first power in t . For small deviations from the half‐filled band case the conductivity as a function of increasing temperature subsequently shows a metal‐like behaviour, a semiconductor‐like behaviour, and a repeated decrease at high temperatures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom