Premium
Convergence of lattice sums in hartree‐fock LCAO calculations
Author(s) -
Stoll H.,
Preuss H.
Publication year - 1973
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.2220600120
Subject(s) - linear combination of atomic orbitals , gaussian , convergence (economics) , hartree–fock method , lattice (music) , translational symmetry , fock matrix , basis (linear algebra) , statistical physics , symmetry (geometry) , mathematics , physics , quantum mechanics , geometry , basis set , density functional theory , acoustics , economics , economic growth
It is shown that in evaluating the elements of the Fock matrix for the case of translational symmetry fast convergence can be achieved using a Gaussian‐lobe basis. The summation over the next‐neighbour shell should be sufficient for many applications. It is pointed out that the separation in volume‐dependent and structure‐dependent terms is not unique.