Premium
Diagonalization of the g ‐Matrix of Low Symmetry Transition Ions
Author(s) -
Soliverez C. E.,
Belorizky E.
Publication year - 1973
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.2220580215
Subject(s) - zeeman effect , hamiltonian (control theory) , symmetry (geometry) , matrix (chemical analysis) , physics , basis (linear algebra) , magnetic field , rotation (mathematics) , hamiltonian matrix , mathematical physics , mathematics , quantum mechanics , symmetric matrix , chemistry , geometry , eigenvalues and eigenvectors , mathematical optimization , chromatography
The explicit operations — rotation of coordinate axes and transformation of basis functions — required in order to diagonalize the g ‐matrix of a Zeeman spin‐Hamiltonian linear with respect to the magnetic field and the effective spin operators, are given for low symmetry complexes. The case where the g ‐matrix is singular, is carefully analyzed.