Premium
Impact of Samarium on the Growth of Epitaxial Bismuth Ferrite Thin Films
Author(s) -
Mühlenbein Lutz,
Bhal Singh Chandra,
Hähnel Angelika,
Campbell Sade,
Hagendorf Christian,
Bhatnagar Akash
Publication year - 2020
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201900625
Subject(s) - materials science , orthorhombic crystal system , bismuth ferrite , samarium , epitaxy , doping , thin film , crystallography , bismuth , crystal structure , ferromagnetism , antiferromagnetism , condensed matter physics , nanotechnology , multiferroics , optoelectronics , ferroelectricity , metallurgy , inorganic chemistry , chemistry , physics , layer (electronics) , dielectric
Doping of rhombohedral bismuth ferrite (BFO) with rare earth elements has been widely investigated as a pathway to extract ferromagnetic response from an otherwise antiferromagnetic material. However, increased level of such doping, in conjunction with the ability of BFO to accommodate large strain, has also resulted in nontrivial changes in the structure, i.e., transition to orthorhombic structure and phase separation to form vertically aligned columns. Herein, epitaxially grown and single crystalline samarium oxide (Sm 2 O 3 ) and doped BFO films are used to investigate the structural evolution. Thin films are grown from undoped (BFO and Sm 2 O 3 ) and doped targets, (0.2,0.5)Sm 2 O 3 –(0.8,0.5)BFO. In addition, the in‐plane strain, imposed by the lattice mismatch between film and substrates, is used to demonstrate the stability of the structures formed in the doped films. Interestingly, the resultant orthorhombic structures are found to be largely independent of the underlying substrates. In‐depth structural and nanoscopic measurements are conducted to investigate the structures. Ordered columnar structures, reminiscent of phase separation, are successfully obtained albeit driven by spontaneous ordering of differently oriented crystals.