Premium
Effect of Intense Laser Field in Gaussian Quantum Well With Position‐Dependent Effective Mass
Author(s) -
Sari Hüseyin,
Kasapoglu Esin,
Sakiroglu Serpil,
Sökmen Ismail,
Duque Carlos A.
Publication year - 2019
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201800758
Subject(s) - effective mass (spring–mass system) , gaussian , physics , electron , position (finance) , laser , heterojunction , field (mathematics) , distribution (mathematics) , quantum , atomic physics , computational physics , quantum mechanics , mathematics , mathematical analysis , finance , pure mathematics , economics
In this paper, the effects of the intense laser field (ILF) and position dependent mass (PDM) on the electronic structure in a Gaussian quantum well are theoretically deduced by using the diagonalization method for obtaining energy levels and corresponding wave functions. We find that, in the case of narrow PDM distribution, the dependence of the energy levels on the effective length of the electron mass distribution becomes more apparent, and the evolution of the dressed mass with ILF is significant. Given this feature, it is more meaningful to take into consideration the PDM of the electron in the low dimensional semiconductor heterostructures under the ILF.