Premium
Delocalized Nonlinear Vibrational Modes in Graphene: Second Harmonic Generation and Negative Pressure
Author(s) -
Korznikova Elena A.,
Shcherbinin Stepan A.,
Ryabov Denis S.,
Chechin George M.,
Ekomasov Evgeny G.,
Barani Elham,
Zhou Kun,
Dmitriev Sergey V.
Publication year - 2019
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201800061
Subject(s) - delocalized electron , graphene , physics , nonlinear system , amplitude , excitation , phonon , molecular vibration , quantum mechanics , lattice (music) , degrees of freedom (physics and chemistry) , classical mechanics , condensed matter physics , raman spectroscopy , acoustics
With the help of molecular dynamics simulations, delocalized nonlinear vibrational modes (DNVM) in graphene are analyzed. Such modes are dictated by the lattice symmetry, they are exact solutions to the atomic equations of motion, regardless the employed interatomic potential and for any mode amplitude (though for large amplitudes they are typically unstable). In this study, only one‐ and two‐component DNVM are analyzed, they are reducible to the dynamical systems with one and two degrees of freedom, respectively. There exist 4 one‐component and 12 two‐component DNVM with in‐plane atomic displacements. Any two‐component mode includes one of the one‐component modes. If the amplitudes of the modes constituting a two‐component mode are properly chosen, periodic in time vibrations are observed for the two degrees of freedom at frequencies ω and 2 ω , that is, second harmonic generation takes place. For particular DNVM, the higher harmonic can have frequency nearly two times larger than the maximal frequency of the phonon spectrum of graphene. Excitation of some of DNVM results in the appearance of negative in‐plane pressure in graphene. This counterintuitive result is explained by the rotational motion of carbon hexagons. Our results contribute to the understanding of nonlinear dynamics of the graphene lattice.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom