z-logo
Premium
Large Anhysteretic Deformation of Shape Memory Alloys at Postcritical Temperatures and Stresses
Author(s) -
Chernenko Volodymyr A.,
L'vov Victor A.,
Kabra Saurabh,
Aseguinolaza Ivan R.,
Kohl Manfred,
Hosoda Hideki,
Barandiaran Jose M.
Publication year - 2018
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201700273
Subject(s) - materials science , hysteresis , austenite , condensed matter physics , thermoelastic damping , shape memory alloy , martensite , pseudoelasticity , nucleation , phase diagram , diffusionless transformation , landau theory , phase transition , phase (matter) , thermodynamics , ferromagnetism , calphad , metallurgy , physics , thermal , microstructure , quantum mechanics
Magnetic and nonmagnetic shape memory alloys (SMAs) exhibit thermoelastic martensitic transformations (MTs) which are hysteretic due to their first‐order nature. According to the thermodynamic Landau theory of phase transitions, which assumes ideal thermoelastic equilibrium at each point of the MT interval, the hysteresis is explained by the different limits of stability for austenite and martensite in the phase diagram. No interactions on the phase boundaries are taken into account. In the real alloys, the hysteresis of MT is related not only to the stability intervals of two phases but also to the processes of nucleation and growth of the resultant phase inside the parent phase. In turn, the features of these processes are related to the heights of energy barriers caused by the incompatibility of austenitic and martensitic lattices, crystal defects and some other physical factors. However, the defects, normally, play a minor role in the width of MT hysteresis if compared to the thermodynamic and crystallographic factors. A reduction of hysteresis of MT in SMAs, being crucial for technology, presents a challenging problem for science. A decrease of hysteresis width of MT was observed recently for the single crystals of ferromagnetic SMAs such Ni–Fe(Co)–Ga and Fe–Pd on approaching of their transformation paths to the critical point in stress–temperature phase diagram. Moreover, the superelastic and shape memory properties characterized by the nearly‐zero hysteresis width were observed in the postcritical transformational regime. Here we show that both the Landau‐type theory of ferroelastic phase transitions and neutron diffraction experiments carried out under axial compression describe the essential features of these properties. We also interpret the experimentally observed anhysteretic phenomena in Ni–Mn–Ga thin films and nanobeam actuators in terms of their postcritical state.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here