Premium
Recombination dynamics in arrays of II–VI epitaxial quantum dots with Förster resonance energy transfer
Author(s) -
Shubina T. V.,
Pozina G.,
Toropov A. A.
Publication year - 2017
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201600414
Subject(s) - förster resonance energy transfer , quantum dot , photoluminescence , exciton , radius , recombination , molecular physics , resonance (particle physics) , epitaxy , resonant inductive coupling , materials science , luminescence , energy transfer , atomic physics , chemical physics , optoelectronics , chemistry , physics , condensed matter physics , nanotechnology , optics , fluorescence , layer (electronics) , biochemistry , computer security , computer science , gene
We report on time‐resolved photoluminescence (TR PL) studies of Förster resonance energy transfer (FRET) between epitaxial CdSe/ZnSe quantum dots (QDs). To prove the existence of FRET, we use two sheets of QD arrays, formed from CdSe insertions of different nominal thicknesses, which are separated by a ZnSe barrier of a variable width. The FRET mechanism manifests itself as acceleration of the PL decay of the energy‐donating QD sheet when the barrier width is decreased. The Förster radius of about 10.5 nm is determined by fitting TR PL data. Besides, our findings exhibit the inhomogeneous distribution of QD sizes within the QD arrays and the influence of FRET efficiency on recombination dynamics of forbidden exciton states. TR PL images showing the acceleration of PL decay of the energy‐donating QD array with decreasing the barrier width.