z-logo
Premium
Mid‐IR quantum cascade lasers: Device technology and non‐equilibrium Green's function modeling of electro‐optical characteristics
Author(s) -
Bugajski M.,
Gutowski P.,
Karbownik P.,
Kolek A.,
Hałdaś G.,
Pierściński K.,
Pierścińska D.,
KubackaTraczyk J.,
Sankowska I.,
Trajnerowicz A.,
Kosiel K.,
Szerling A.,
Grzonka J.,
Kurzydłowski K.,
Slight T.,
Meredith W.
Publication year - 2014
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201350322
Subject(s) - laser , metalorganic vapour phase epitaxy , optoelectronics , materials science , cascade , epitaxy , diffraction , gallium arsenide , optics , nanotechnology , chemistry , physics , layer (electronics) , chromatography
In this paper, we report the results of investigation of 9.5 µm AlGaAs/GaAs and strain compensated 4.7 µm AlInAs/InGaAs/InP QCLs. We also show the results for 9.5 µm lasers based on lattice matched AlInAs/InGaAs/InP structures. The developed GaAs/AlGaAs lasers show the record pulse powers of 6 W at 77 K and up to 50 mW at 300 K. This has been achieved by careful optimization of the MBE growth process and by applying a high reflectivity metallic coating to the back facet of the laser. The 9.5 µm AlInAs/InGaAs/InP lasers utilize AlInAs waveguide and were grown exclusively by MBE without MOCVD regrowth. The short wavelength, strain compensated QCLs were grown by MOCVD. They represent state‐of‐the‐art parameters for the devices of their design. For epitaxial process control, the atomic‐force microscopy (AFM), high resolution X‐ray diffraction (HR‐XRD) and transmission electron microscopy (TEM) were used to characterize the morphological and structural properties of the layers. The basic electro‐optical characterization of the lasers is provided. We also present results of Green's function modeling of mid‐IR QCLs and demonstrate the capability of non‐equilibrium Green's function (NEGF) approach for sophisticated but still computationally effective simulation of laser's characteristics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here