z-logo
Premium
DFT investigation of the influence of ordered vacancies on elastic and magnetic properties of graphene and graphene‐like SiC and BN structures
Author(s) -
Fedorov A. S.,
Popov Z. I.,
Fedorov D. A.,
Eliseeva N. S.,
Serjantova M. V.,
Kuzubov A. A.
Publication year - 2012
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201200105
Subject(s) - graphene , materials science , condensed matter physics , magnetic moment , ferromagnetism , density functional theory , vacancy defect , boron nitride , nanotechnology , computational chemistry , chemistry , physics
Influence of ordered monovacancies on elastic properties of graphene is theoretically investigated by density functional theory (DFT) calculations. Inverse linear dependence of the graphene Young's modulus on the concentration of vacancies has been revealed and migration rate of the vacancies has been calculated as a function of applied strain. It is shown that the migration rate can be controlled by applying various strains or temperatures. The influence of ordered monovacancies on magnetic properties of graphene as well as graphene‐like hexagonal carbon silicide (2D‐SiC) and the boron nitride (h‐BN) structures is investigated. It is established that the presence of vacancies in all systems yields the appearance of local magnetic moment. However, in 2D‐SiC structure the magnetic moment occurs only in the case of a Si vacancy. Influence of the distance between vacancies on the ferromagnetic or anti‐ferromagnetic ordering for all structures is established.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here