Premium
Properties of crystalline coronene: Dispersion forces leading to a larger van der Waals radius for carbon
Author(s) -
Fedorov Igor,
Zhuravlev Yurii,
Berveno Victor
Publication year - 2012
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201147563
Subject(s) - van der waals force , coronene , density functional theory , van der waals radius , london dispersion force , van der waals strain , lattice constant , dispersion (optics) , crystal structure , radius , materials science , condensed matter physics , molecular physics , chemistry , computational chemistry , physics , molecule , crystallography , quantum mechanics , computer security , organic chemistry , computer science , diffraction
We investigated the electronic structure of crystalline coronene within the framework of the dispersion corrected density‐functional theory (DFT‐D). We use the DFT‐D2 and DFT‐D3 methods. Utilization of the DFT‐D3 leads to a correct account of the dispersion forces, which results in a good agreement of the computed lattice parameters and cohesive energy. In the framework of DFT‐D3 the cohesive energy of crystalline coronene is 1.483 eV. Computed lattice constants and cohesive energy show good agreement with experimental data if larger van der Waals (vdW) radius for carbon is used. Based on the relaxed crystal structures, we have computed the band structure, total and deformation electron density.