z-logo
Premium
Crystal orientation of GaN layers on (10 1 0) m ‐plane sapphire
Author(s) -
Frentrup Martin,
Ploch Simon,
Pristovsek Markus,
Kneissl Michael
Publication year - 2011
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201046489
Subject(s) - bar (unit) , sapphire , materials science , nucleation , crystallography , gallium nitride , diffraction , epitaxy , crystal (programming language) , nitride , crystal twinning , gallium , plane (geometry) , orientation (vector space) , condensed matter physics , optics , geometry , composite material , physics , layer (electronics) , chemistry , metallurgy , microstructure , thermodynamics , laser , meteorology , computer science , programming language , mathematics
Based on the atomic arrangement of the $(10{\bar {1}}0)$ m ‐plane sapphire surface, we have developed a model for the initial nucleation process of gallium‐nitride (GaN). This model describes why $(11{\bar {2}}2)$ and $(10{\bar {1}}{\bar {3}})$ are the preferred orientations of GaN on the $(10{\bar {1}}0)$ sapphire. The experimental results from high‐resolution X‐ray diffraction measurements, like the crystallographic relations and the twinning of the $(1{\bar {1}}0{\bar {3}})$ orientation are explained by the model too. Our model also predicts that $(11{\bar {2}}2)$ thin films are metal‐polar and $(1{\bar {1}}0{\bar {3}})$ thin films are nitrogen‐polar.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom