Premium
Three‐dimensional GaN for semipolar light emitters
Author(s) -
Wunderer T.,
Feneberg M.,
Lipski F.,
Wang J.,
Leute R. A. R.,
Schwaiger S.,
Thonke K.,
Chuvilin A.,
Kaiser U.,
Metzner S.,
Bertram F.,
Christen J.,
Beirne G. J.,
Jetter M.,
Michler P.,
Schade L.,
Vierheilig C.,
Schwarz U. T.,
Dräger A. D.,
Hangleiter A.,
Scholz F.
Publication year - 2011
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.201046352
Subject(s) - materials science , optoelectronics , sapphire , wafer , light emitting diode , diode , quantum well , piezoelectricity , epitaxy , polarization (electrochemistry) , laser , optics , nanotechnology , composite material , chemistry , physics , layer (electronics)
Selective‐area epitaxy is used to form three‐dimensional (3D) GaN structures providing semipolar crystal facets. On full 2‐in. sapphire wafers we demonstrate the realization of excellent semipolar material quality by introducing inverse GaN pyramids. When depositing InGaN quantum wells on such a surface, the specific geometry influences thickness and composition of the films and can be nicely modeled by gas phase diffusion processes. Various investigation methods are used to confirm the drastically reduced piezoelectric polarization on the semipolar planes. Complete electrically driven light‐emitting diode test structures emitting in the blue and blue/green spectral regions show reasonable output powers in the milliwatt regime. Finally, first results of the integration of the 3D structures into a conventional laser design are presented.