z-logo
Premium
Growth, morphology, and structural properties of group‐III‐nitride nanocolumns and nanodisks
Author(s) -
Calleja E.,
Ristić J.,
FernándezGarrido S.,
Cerutti L.,
SánchezGarcía M. A.,
Grandal J.,
Trampert A.,
Jahn U.,
Sánchez G.,
Griol A.,
Sánchez B.
Publication year - 2007
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.200675628
Subject(s) - nitride , heterojunction , morphology (biology) , chemical vapor deposition , metal , materials science , nanotechnology , group (periodic table) , epitaxy , molecular beam epitaxy , catalysis , chemical engineering , chemistry , layer (electronics) , optoelectronics , metallurgy , geology , organic chemistry , engineering , paleontology
The growth conditions to achieve group‐III‐nitride nanocolumns and nanocolumnar heterostructures by plasma‐assisted molecular beam epitaxy are studied. The evolution of the nanocolumnar morphology with the growth conditions is determined for (Ga,Al)N and (In,Ga)N nanocolumns. The mechanisms behind the nanocolumnar growth under high N‐rich conditions are clarified in the sense that no seeding or catalysts are required, as it is the case in the vapour‐liquid‐solid model that applies to most nanocolumns grown by metal organic chemical vapour deposition, either with group‐III nitrides, II–VI or III–V compounds. Some examples of nanocolumnar heterostructures are given, like quantum disks and cylindrical nanocavities. Preliminary results on the growth of arrays of ordered GaN nanocolumns are reported. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here