z-logo
Premium
Functionalization of fullerenes and carbon nanotubes
Author(s) -
Hirsch Andreas
Publication year - 2006
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.200669191
Subject(s) - dendrimer , supramolecular chemistry , fullerene , carbon nanotube , surface modification , molecule , nanotechnology , amphiphile , chemistry , combinatorial chemistry , covalent bond , electron transfer , materials science , organic chemistry , copolymer , polymer
Our research is devoted to the design of new materials composed of various molecular building blocks such as fullerenes, carbon nanotubes, porphyrines, dendrimers, calixarenes and acetylene compounds. These functional units are linked by covalent bonds or via supramolecular organization. The aim is to generate structures, which, for example, represent models for redox proteins, enable a directed photo‐induced electron or energy transfer, can form micellar containers for the encapsulation of guest molecules, are useful for applications in the field of molecular electronics and serve as new redox active drugs. The basis for the successful realization of such complex architectures is a) the development of new synthesis concepts, for example, for chiral and amphiphilic building blocks as well as for derivatives of carbon rich molecules, b) the systematic investigation of the self‐assembly of achiral and chiral supramolecular organization motifs and c) the calculation of molecular properties with quantum mechanical methods. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here