z-logo
Premium
Two‐photon photoluminescence and exciton binding energies in single‐walled carbon nanotubes
Author(s) -
Pomraenke R.,
Maultzsch J.,
Reich S.,
Chang E.,
Prezzi D.,
Ruini A.,
Molinari E.,
Strano M. S.,
Thomsen C.,
Lienau C.
Publication year - 2006
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.200668080
Subject(s) - exciton , carbon nanotube , rydberg formula , photoluminescence , binding energy , photoluminescence excitation , spectral line , ab initio , atomic physics , molecular physics , luminescence , excitation , ab initio quantum chemistry methods , materials science , chemistry , physics , condensed matter physics , nanotechnology , quantum mechanics , optoelectronics , ionization , ion , organic chemistry , molecule
We compare experimental one‐ and two‐photon luminescence excitation spectra of single‐walled carbon nanotubes at room temperature to ab initio calculations. The experimental spectra reveal a Rydberg‐like series of excitonic states. The energy splitting between these states is a clear fingerprint of excitonic correlations in carbon nanotubes. From those spectra, we derive exciton binding energies of 0.3–0.4 eV for nanotubes with diameters between 6.8 Å and 9.0 Å. These energies are in quantitative agreement with our theoretical calculations, which predict the symmetries of the relevant excitonic wave functions and indicate that a low‐lying optically dark excitonic state may be responsible for the low luminescence quantum yields in nanotubes. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom