Premium
How to avoid non‐radiative escape of excitons from quantum dots?
Author(s) -
Robin I. C.,
André R.,
Dang Le Si,
Mariette H.,
Tatarenko S.,
Gérard J. M.,
Kheng K.,
Tinjod F.,
Bartels M.,
Lischka K.,
Schikora D.
Publication year - 2004
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.200304268
Subject(s) - exciton , radiative transfer , photoluminescence , cadmium telluride photovoltaics , quantum dot , recombination , spontaneous emission , spectroscopy , atomic physics , physics , range (aeronautics) , non radiative recombination , atmospheric temperature range , condensed matter physics , chemistry , materials science , optoelectronics , optics , quantum mechanics , thermodynamics , laser , biochemistry , composite material , gene
We investigated the transition between two different exciton recombination regime in quantum dots depending on temperature. When temperature is raised above a threshold value that we determine experimentally non‐radiative recombination channels, characterized by their activation energy, dominate over radiative recombination. The analyses of time resolved photoluminescence spectroscopy versus temperature shows that the maximum temperature for dominant radiative recombination scales linearly with the activation energy of the non‐radiative channels over a large range of values (10–60 meV) measured for various kind of II–VI‐based quantum dots: CdTe/ZnTe, CdTe/ZnMgTe, CdSe/ZnSe. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)