z-logo
Premium
Interwell exciton dispersion engineering, coherent phonons generation and optical detection of exciton condensate
Author(s) -
Lozovik Yu. E.,
Ovchinnikov I. V.,
Ostroumov R. P.,
Wang K. L.
Publication year - 2004
Publication title -
physica status solidi (b)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.51
H-Index - 109
eISSN - 1521-3951
pISSN - 0370-1972
DOI - 10.1002/pssb.200301927
Subject(s) - exciton , phonon , condensed matter physics , magnetic field , physics , quantum well , biexciton , dispersion (optics) , photoluminescence , electric field , spontaneous emission , optics , quantum mechanics , laser
We propose to use dispersion engineering of interwell excitons in coupled quantum wells with external electric and magnetic fields in order to generate coherent phonons and to detect exciton condensate. A parallel magnetic field moves the dispersion minimum of interwell excitons away from the radiative zone and thus reduces their recombination rate. Normal electric field moves an interwell excitons dispersion minimum on the energy scale. These two fields effect can be used to tune the resonance condition of the interwell excitons recombination process via an in‐well excitons level, which results in acoustic phonon emission. We show, that one can change recombination rate as well as intensity and angular distribution of the interwell excitons photoluminescence in the wide range by controlling the external fields. Based on this principle we propose and theoretically evaluate a procedure to detect the condensate of interwell excitons, as well as a scheme to obtain a coherent and monochromatic phonon beam (saser). The statistics of the phonon emission from the condensate of interwell excitons is studied. Numerical estimate for GaAs/AlGaAs coupled quantum wells is provided. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here