Premium
High‐Index‐Contrast λ = 1.55 μm AlInGaAs/InP Laser Heterostructure Waveguides Through Selective Core Oxidation
Author(s) -
Tian Yuan,
Li Jinyang,
Kirch Jeremy D.,
Sigler Chris,
Mawst Luke,
Pelucchi Emanuele,
Peters Frank H.,
Hall Douglas C.
Publication year - 2019
Publication title -
physica status solidi (a)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.532
H-Index - 104
eISSN - 1862-6319
pISSN - 1862-6300
DOI - 10.1002/pssa.201800495
Subject(s) - materials science , heterojunction , thermal oxidation , optoelectronics , cladding (metalworking) , diode , laser , oxide , metalorganic vapour phase epitaxy , epitaxy , chemical vapor deposition , layer (electronics) , optics , silicon , nanotechnology , physics , metallurgy
A deep‐etched high‐index‐contrast ridge waveguide for low bend loss photonic integration is realized through selective lateral oxidation of a λ = 1.55 µm AlInGaAs multi‐quantum well diode laser heterostructure waveguide core layer sandwiched between InP cladding layers. The process is enabled by first depositing a thin protective layer to fully suppress the thermal dissociation of exposed InP surfaces during the subsequent oxygen‐enhanced wet thermal oxidation process. Either ≈30–100 nm of InGaAs grow through selective epitaxial regrowth via MOCVD or ≈6 Å of HfO 2 grows via atomic layer deposition is found to be effective at preventing dissociation damage. A lateral oxidation depth of ≈1.0 µm is achieved with a 3 h oxidation at 525 °C, yielding a buried oxide high optical confinement waveguide with reduced capacitance and contact resistance, suitable for the integration of high‐speed, low‐bend loss integrated laser devices.