Premium
Two‐Dimensional Hot Spot Temperature Simulation for c‐Si Photovoltaic Modules
Author(s) -
Qian Jiadong,
Thomson Andrew,
Ernst Marco,
Blakers Andrew
Publication year - 2018
Publication title -
physica status solidi (a)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.532
H-Index - 104
eISSN - 1862-6319
pISSN - 1862-6300
DOI - 10.1002/pssa.201800429
Subject(s) - ohmic contact , hot spot (computer programming) , photovoltaic system , materials science , electroluminescence , silicon , solar cell , crystalline silicon , optoelectronics , temperature measurement , heat transfer , computer simulation , operating temperature , nuclear engineering , mechanics , thermodynamics , computer science , nanotechnology , electrical engineering , physics , engineering , layer (electronics) , operating system
A two‐step method to simulate the spatially resolved temperature of a partially shaded cell in a crystalline silicon photovoltaic (PV) module is presented and tested. First, an efficient module electronic simulation tool computes the operating conditions of a module's constituent cells. Second, a two‐dimensional finite‐element analysis simulation, utilizing forward‐, and revers‐bias electroluminescence measurements, is performed to spatially resolved cell temperature. With an outdoor experiment, un‐encapsulated cell temperatures are directly measured under controlled heat transfer conditions. A peak local cell temperature of 144 °C is observed on a multi crystalline silicon cell dissipating 54 W heat in the experiment, 57 °C higher than the result from a non‐spatially resolved simulation. Experimental results indicate cells without significant Ohmic shunts are suitable for temperature simulation with the aid of reverse bias electroluminescence imaging, which yields a maximum temperature prediction error of less than 15 °C. However, simulation for cells with significant Ohmic shunts is prone to underestimate the cell temperature by up to 45 °C. Multiple shading fractions from 12 to 80% lead to severe heating scenarios in such case.