Premium
Metal–oxide–diamond interface investigation by TEM: Toward MOS and Schottky power device behavior
Author(s) -
Piñero J. C.,
Araujo D.,
Traoré A.,
Chicot G.,
Maréchal A.,
Muret P.,
Alegre M. P.,
Villar M. P.,
Pernot J.
Publication year - 2014
Publication title -
physica status solidi (a)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.532
H-Index - 104
eISSN - 1862-6319
pISSN - 1862-6300
DOI - 10.1002/pssa.201431178
Subject(s) - transmission electron microscopy , oxide , electron energy loss spectroscopy , materials science , diamond , schottky diode , high resolution transmission electron microscopy , metal , dark field microscopy , scanning transmission electron microscopy , field electron emission , energy filtered transmission electron microscopy , schottky barrier , analytical chemistry (journal) , optoelectronics , nanotechnology , electron , microscopy , chemistry , optics , composite material , metallurgy , physics , chromatography , diode , quantum mechanics
Metal and oxide distribution in diamond metal–oxide–semiconductor (MOS) structures are characterized using several transmission electron microscopy (TEM) modes at nanometric scale. To understand their electrical behavior, oxygen distribution using electron energy loss spectroscopy (EELS) through the layer structure, high‐resolution electron microscopy (HREM), and annular dark field (ADF) observations are reported. Oxide thickness variations, as well as oxygen content variations have been identified and characterized at an atomic resolution. The latter allows to understand the related electrical behavior as, for example, leakages or shortcuts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom