Premium
Optically pumped lasing at 300.4 nm in AlGaN MQW structures grown by plasma‐assisted molecular beam epitaxy on c‐Al 2 O 3
Author(s) -
Jmerik V. N.,
Mizerov A. M.,
Shubina T. V.,
Toropov A. A.,
Belyaev K. G.,
Sitnikova A. A.,
Yagovkina M. A.,
Kop'ev P. S.,
Lutsenko E. V.,
Danilchyk A. V.,
Rzheutskii N. V.,
Yablonskii G. P.,
Monemar B.,
Ivanov S. V.
Publication year - 2010
Publication title -
physica status solidi (a)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.532
H-Index - 104
eISSN - 1862-6319
pISSN - 1862-6300
DOI - 10.1002/pssa.200983612
Subject(s) - lasing threshold , materials science , molecular beam epitaxy , photoluminescence , optoelectronics , superlattice , sapphire , laser , epitaxy , dislocation , plasma , optics , wavelength , nanotechnology , physics , composite material , layer (electronics) , quantum mechanics
We have demonstrated optically pumped room‐temperature pulse lasing at 300.4 nm from an AlGaN‐based multiple‐quantum‐well (MQW) structure grown by plasma‐assisted molecular beam epitaxy on a c‐sapphire substrate. The lasing was achieved at the threshold peak power of ∼12 MW/cm 2 . The MQW structure involved AlGaN/AlN short‐period superlattices to decrease the threading dislocation densities from 10 11 down to 10 9 –10 10 cm −2 . Studies of time‐resolved photoluminescence (TRPL) spectra and cw PL temperature dependences (10–300 K) of different MQW structures, as well as numerical calculations of the optical gain and confinement in the laser structure allowed us to conclude about the optimum design of AlGaN‐based MQW structures for the lower threshold UV lasing.