z-logo
Premium
Unconventional control of excited states of a dimer molecule by a localized light field between metal nanostructures
Author(s) -
Iida Takuya,
Ishihara Hajime
Publication year - 2009
Publication title -
physica status solidi (a)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.532
H-Index - 104
eISSN - 1862-6319
pISSN - 1862-6300
DOI - 10.1002/pssa.200881299
Subject(s) - excited state , wave function , field (mathematics) , molecule , nanostructure , dimer , physics , atomic physics , chemistry , quantum mechanics , mathematics , nuclear magnetic resonance , pure mathematics
Abstract We have made a theoretical study of the spatial interplay between the localized light field (LLF) and the electronic wavefunction of molecules. When the LLF has a nanoscale spatial variation comparable to a molecular wavefunction, this interplay is crucial to determine the optical response of molecular excited states. Such a condition can be realized in case that a molecule is lying in the vicinity of a metal nanogap. By using the calculation method applicable to arbitrary‐shaped samples, we demonstrate a drastic enhancement of the response electromagnetic field from an optical forbidden state whose magnitude is comparable to that from an allowed state. The obtained result indicates that we have a possibility to control the excited states of molecules by designing the LLF with metal nanostructures. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here