z-logo
Premium
Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles
Author(s) -
Köseoğlu Y.,
Kavas H.,
Aktaş and B.
Publication year - 2006
Publication title -
physica status solidi (a)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.532
H-Index - 104
eISSN - 1862-6319
pISSN - 1862-6300
DOI - 10.1002/pssa.200563104
Subject(s) - superparamagnetism , anisotropy , spins , magnetocrystalline anisotropy , condensed matter physics , materials science , magnetic anisotropy , nanoparticle , single domain , magnetite , magnetic nanoparticles , nuclear magnetic resonance , magnetic field , magnetization , nanotechnology , physics , optics , quantum mechanics , metallurgy
Superparamagnetic nanoparticles of magnetite (Fe 3 O 4 ) 2 nm in size were produced by a co‐precipitation method. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g ‐factor, g eff ≈ 2. It was observed that, as the temperature decreased to 24 K, the apparent resonance field decreases while the line width considerably increases. We used a theoretical formalism based on a distribution of diameters or volumes of the nanoparticles. The nanoparticles behave as single magnetic domains with random orientations of magnetic moments which are subject to thermal fluctuations. A Landau–Lifshitz line shape function presents adequate results which are in good agreement with the experimental ones. A single set of parameters provides good fits to the spectra recorded at different temperatures. At high T the SPR line shape is governed by the core anisotropy and the thermal fluctuations. By decreasing the temperature, the magnetic susceptibility of shell spins increases. As a result of this, the surface spins produce an effective field on the core leading to a decrease of resonance field, B r . Also, the effective anisotropy increases as the shell spins begin to order. So, the results are interpreted by a simple model, in which each single‐domain nanoparticle is considered as a core–shell system, with magnetocrystalline anisotropy on the core and surface anisotropy on the shell. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here