z-logo
Premium
Technical aspects of 〈 $ \bf 11\bar 20 $ 〉 4H–SiC MOSFET processing
Author(s) -
Blanc C.,
Tournier D.,
Soulière V.,
Juillaguet S.,
Contreras S.,
Zielinski M.,
Godig P.,
Monteil Y.,
Camassel Jean
Publication year - 2005
Publication title -
physica status solidi (a)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.532
H-Index - 104
eISSN - 1862-6319
pISSN - 1862-6300
DOI - 10.1002/pssa.200460473
Subject(s) - epitaxy , doping , wafer , annealing (glass) , materials science , mosfet , optoelectronics , substrate (aquarium) , silicon on insulator , bar (unit) , ion implantation , hall effect , layer (electronics) , nanotechnology , analytical chemistry (journal) , silicon , electrical engineering , chemistry , metallurgy , ion , engineering , physics , transistor , electrical resistivity and conductivity , voltage , oceanography , chromatography , organic chemistry , meteorology , geology
In order to process n‐type channel MOSFETs on 〈 $ 11\bar 20 $ 〉‐oriented 4H–SiC wafers one has to optimise, independently, many different steps. First is the growth of the active epitaxial layer, including the effect of p‐type doping. Next is the oxidation and, finally, the n‐type implantation for source and drain formation. In this work, we investigate the growth and doping of the p‐type doped epitaxial layer on the 〈 $ 11\bar 20 $ 〉‐oriented substrate using, both, SIMS, low temperature photoluminescence measurements and Hall effect measurement to control the final doping level. Next we investigate the change in oxidation kinetics with respect to the conventional 〈0001〉 surfaces. Finally, we evaluate the efficiency of implantation and annealing processes. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here