
Flexible and efficient Bayesian pharmacometrics modeling using Stan and Torsten, Part I
Author(s) -
Margossian Charles C.,
Zhang Yi,
Gillespie William R.
Publication year - 2022
Publication title -
cpt: pharmacometrics and systems pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.53
H-Index - 37
ISSN - 2163-8306
DOI - 10.1002/psp4.12812
Subject(s) - computer science , computation , bayesian inference , inference , bayesian probability , artificial intelligence , theoretical computer science , machine learning , programming language
Stan is an open‐source probabilistic programing language, primarily designed to do Bayesian data analysis. Its main inference algorithm is an adaptive Hamiltonian Monte Carlo sampler, supported by state‐of‐the‐art gradient computation. Stan's strengths include efficient computation, an expressive language that offers a great deal of flexibility, and numerous diagnostics that allow modelers to check whether the inference is reliable. Torsten extends Stan with a suite of functions that facilitate the specification of pharmacokinetic and pharmacodynamic models and makes it straightforward to specify a clinical event schedule. Part I of this tutorial demonstrates how to build, fit, and criticize standard pharmacokinetic and pharmacodynamic models using Stan and Torsten.