z-logo
Premium
Current strategies for the development of peptide‐based anti‐cancer therapeutics
Author(s) -
Borghouts Corina,
Kunz Christian,
Groner Bernd
Publication year - 2005
Publication title -
journal of peptide science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 66
eISSN - 1099-1387
pISSN - 1075-2617
DOI - 10.1002/psc.717
Subject(s) - computational biology , gene , biology , transduction (biophysics) , cancer , transformation (genetics) , bioinformatics , genetics , biochemistry
The completion of the human genome sequence and the development of new techniques, which allow the visualisation of comprehensive gene expression patterns, has led to the identification of a large number of gene products differentially expressed in tumours and corresponding normal tissues. The task at hand is the sorting of these genes into correlative and causative ones. Correlative genes are merely changed as a consequence of transformation and have no decisive effects upon transformation. In contrast, causative genes play a direct role in the process of cellular transformation and the maintenance of the transformed state, which can be exploited for therapeutic purposes. Oncogenes and tumour suppressor genes are prime targets for the development of new inhibitors and gene therapeutic strategies. However, many target oncogene products do not exhibit enzymatic activity that can be inhibited by conventional small molecular weight compounds. They exert their functions through regulated protein–protein or protein–DNA interactions and might require other compounds for efficient interference with such functions. Peptides are emerging as a novel class of drugs for cancer therapy, which could fulfil these tasks. Peptide therapy aims at the specific inhibition of inappropriately activated oncogenes. This review will focus on the selection procedures, which can be employed to identify useful peptides for the treatment of cancer. Before peptide‐based therapeutics can become useful, it will be necessary to increase their stability by modifications or the use of scaffolds. Additionally, various delivery methods including liposomes and particularly the use of protein transduction domains (PTDs) have to be explored. These strategies will yield highly specific and more effective peptides and improve the potential of peptide‐based anti‐cancer therapeutics. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here