Premium
Conformationally constrained peptides for drug delivery
Author(s) -
Jerath Gaurav,
Goyal Ruchika,
Trivedi Vishal,
Santhoshkumar Thankayyan R.,
Ramakrishnan Vibin
Publication year - 2020
Publication title -
journal of peptide science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 66
eISSN - 1099-1387
pISSN - 1075-2617
DOI - 10.1002/psc.3244
Subject(s) - chemistry , drug delivery , cancer cell , peptide , nanomedicine , cell , conjugate , hek 293 cells , biochemistry , biophysics , cancer , nanotechnology , receptor , nanoparticle , biology , materials science , mathematical analysis , genetics , mathematics , organic chemistry
Peptides have shown great potential in acting as template for developing versatile carrier platforms in nanomedicine, aimed at selective delivery of drugs to only pathological tissues saving its normal neighbors. Cell‐penetrating peptides (CPPs) are short oligomeric peptides capable of translocating across the cell membrane while simultaneously employing multiple mechanisms of entry. Most CPPs exist as disordered structures in solution and may adopt a helical conformation on interaction with cell membrane, vital to their penetrative capability. Herein, we report a series of cationic helical amphipathic peptides (CHAPs), which are topologically constrained to be helical. The peptides were tested against cervical and breast cancer cells for their cell penetration and drug delivery potential. The cellular uptake of CHAP peptides is independent of temperature and energy availability. The activity of the peptides is biocompatible in bovine serum. CHAPs delivered functional methotrexate (MTX) inside the cell as CHAP‐MTX conjugates. CHAP‐MTX conjugates were more toxic to cancer cells than MTX alone. However, the CHAP‐MTX conjugates were less toxic to HEK‐293 cells compared with the cancer cells suggesting higher affinity towards cancer cells.