Premium
The effect of terminal groups and halogenation of KLVFF peptide on its activity as an inhibitor of β‐amyloid aggregation
Author(s) -
Khalili Samani Elnaz,
Mofid Mohammad Reza,
Malakoutikhah Morteza
Publication year - 2020
Publication title -
journal of peptide science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 66
eISSN - 1099-1387
pISSN - 1075-2617
DOI - 10.1002/psc.3227
Subject(s) - peptide , chemistry , thioflavin , fibril , cytotoxicity , ic50 , amyloid (mycology) , biochemistry , amide , proteolysis , in vitro , alzheimer's disease , enzyme , medicine , inorganic chemistry , disease , pathology
The aggregation of Aβ peptide into amyloid fibrils in the brain is associated with Alzheimer's disease (AD). Inhibition of Aβ aggregation seemed a potential treatment for AD. It was previously shown that a short fragment of Aβ peptide (KLVFF, 16‐20) bound Aβ inhibited its aggregation. In this work, using KLVFF peptide, we synthesized two peptide families and then evaluated their inhibitory capacities by conventional assays such as thioflavin T (ThT) fluorescence spectroscopy, turbidity measurement, and the 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS). The effect of peptide terminal groups on its inhibitory activity was first studied. Subsequently, the influence of halogenated amino acids on peptide anti‐aggregation properties was investigated. We found that iodinated peptide with amine in the N and amide in the C termini, respectively, was the best inhibitor of Aβ fibers formation. Halogenated peptides seemed to decrease the number of Aβ fibrils; however, they did not reduce Aβ cytotoxicity. The data obtained in this work seemed promising in developing potential peptide drugs for treatment of AD.