Premium
Chemical and semisynthesis of modified histones
Author(s) -
Maity Suman Kumar,
Jbara Muhammad,
Brik Ashraf
Publication year - 2016
Publication title -
journal of peptide science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 66
eISSN - 1099-1387
pISSN - 1075-2617
DOI - 10.1002/psc.2848
Subject(s) - semisynthesis , epigenetics , histone , chromatin , computational biology , effector , biology , posttranslational modification , chemistry , genetics , microbiology and biotechnology , dna , biochemistry , gene , enzyme
Post‐translational modifications (PTMs) of histones play critical roles in the epigenetic regulation of eukaryotic genome by directly altering the biophysical properties of chromatin or by recruiting effector proteins. The large number of PTMs and the inherent complexity in their population and signaling processes make it highly challenging to understand epigenetics‐related processes. To address these challenges, accesses to homogeneously modified histones are obligatory. Over the last decade, synthetic protein chemists have been devising novel synthetic tools and applying state‐of‐the‐art chemoselective ligation strategies to prepare precious materials useful in answering fundamental questions in this area. In this short review, we cover some of the recent breakthroughs in these directions in particular the synthesis and semi‐synthesis of modified histones and their use to unravel the mysteries of epigenetics. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.