Premium
Adsorption of chemically synthesized mussel adhesive peptide sequences containing DOPA on stainless steel
Author(s) -
Chandrasekaran Neha,
Dimartino Simone,
Janmale Tejraj,
Gieseg Steven P.,
Fee Conan J.
Publication year - 2015
Publication title -
journal of peptide science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 66
eISSN - 1099-1387
pISSN - 1075-2617
DOI - 10.1002/psc.2776
Subject(s) - tyrosinase , peptide , adsorption , mussel , chemistry , quartz crystal microbalance , adhesive , adhesion , biomaterial , tyrosine , biochemistry , nuclear chemistry , enzyme , organic chemistry , biology , layer (electronics) , ecology
The adsorption of proteins at solid–liquid interfaces is important in biosensor and biomaterial applications. Marine mussels affix themselves to surfaces using a highly cross‐linked, protein‐based adhesive containing a high proportion of L ‐3,4‐dihydroxyphenylalanine (DOPA) residues. In this work, the effect of DOPA residues on protein adhesion on stainless steel surfaces was studied using a quartz crystal microbalance with dissipation system. The adsorption of two repetitive peptide motifs, KGYKYYGGSS and KGYKYY, from the mussel Mytilus edulis foot protein 5 on stainless steel was studied before and after chemo‐enzymatic modification of tyrosine residues to DOPA using mushroom tyrosinase. Conversion from tyrosine to DOPA, evaluated by HPLC, was in the range 70–99%. DOPA‐modified sequences showed fourfold greater adhesion than unmodified M. edulis foot protein 5 motifs. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.