Premium
Inhibitory effect of the carnosine–gallic acid synthetic peptide on MMP‐2 and MMP‐9 in human fibrosarcoma HT1080 cells
Author(s) -
Kim SungRae,
Eom TaeKil,
Byun HeeGuk
Publication year - 2014
Publication title -
journal of peptide science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 66
eISSN - 1099-1387
pISSN - 1075-2617
DOI - 10.1002/psc.2658
Subject(s) - ht1080 , matrix metalloproteinase , fibrosarcoma , cancer research , chemistry , metastasis , extracellular matrix , plasminogen activator , gallic acid , urokinase receptor , biochemistry , receptor , cell , biology , cancer , medicine , endocrinology , antioxidant , genetics
Matrix metalloproteinases (MMPs) are a family of zinc‐dependent endopeptidases that degrade extracellular matrix components and play important roles in a variety of biological and pathological processes such as malignant tumor metastasis and invasion. In this study, we constructed carnosine–gallic acid peptide (CGP) to identify a better MMP inhibitor than carnosine. The inhibitory effects of CGP on MMP‐2 and MMP‐9 were investigated in the human fibrosarcoma (HT1080) cell line. As a result, CGP significantly decreased MMP‐2 and MMP‐9 expression levels without a cytotoxic effect. Moreover, CGP may inhibit migration and invasion in HT1080 cells through the urokinase plasminogen activator (uPA)–uPA receptor signaling pathways to inhibit MMP‐2 and MMP‐9. Based on these results, it appears that CGP may play an important role in preventing and treating several MMP‐2 and MMP‐9‐mediated health problems such as metastasis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.