Premium
A novel peptide specifically targeting ovarian cancer identified by in vivo phage display
Author(s) -
Ma Chuying,
Yin Guangfu,
Yan Danhong,
He Xueling,
Zhang Li,
Wei Yan,
Huang Zhongbing
Publication year - 2013
Publication title -
journal of peptide science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 66
eISSN - 1099-1387
pISSN - 1075-2617
DOI - 10.1002/psc.2555
Subject(s) - phage display , peptide , in vivo , peptide library , ovarian cancer , cancer research , context (archaeology) , flow cytometry , in vitro , biology , microbiology and biotechnology , cancer , immunostaining , chemistry , biochemistry , peptide sequence , immunohistochemistry , immunology , gene , paleontology , genetics
Discovery of peptide ligands that can target human ovarian cancer and deliver chemotherapeutics offers new opportunity for cancer therapy. The advent of phage‐displayed peptide library facilitated the screening of such peptides. In vivo screening that set in a microanatomic and functional context was applied in our study, and a novel peptide WSGPGVWGASVK targeting ovarian cancer was isolated. The phage clone PC3‐1 displaying peptide WSGPGVWGASVK can gain effective access to accumulate in the tumor sites after intravenous injection while reducing its accumulation in normal organs. Positive immunostaining of PC3‐1 was located in both sites of tumor cells and tumor blood vessels, which resulted in a diffuse binding pattern through the tumor. In vitro study results confirmed the capability of peptide WSGPGVWGASVK binding to and being internalized by both tumor cells and angiogenic endothelial cells. Flow cytometry analysis revealed that the peptide bound to SKOV3 cells with Kd value of 5.43 ± 0.4 μM. Taken together, it suggested that peptide WSGPGVWGASVK is a lead candidate for delivering therapeutics to penetrate into tumors. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.