Premium
Peptide‐mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes
Author(s) -
Dekiwadia Chaitali D.,
Lawrie Ann C.,
Fecondo John V.
Publication year - 2012
Publication title -
journal of peptide science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.475
H-Index - 66
eISSN - 1099-1387
pISSN - 1075-2617
DOI - 10.1002/psc.2430
Subject(s) - colloidal gold , chemistry , organelle , endocytosis , lysosome , biophysics , fluorescence microscope , cell penetrating peptide , drug delivery , cell , nanoparticle , peptide , nanotechnology , cell sorting , biochemistry , fluorescence , materials science , enzyme , biology , quantum mechanics , physics
There is considerable interest in the sub‐cellular targeting and delivery of biomolecules, therapeutic and imaging agents, and nanoparticles and nanoparticle conjugates into organelles for therapeutic and imaging purposes. To date, a number of studies have used sorting peptides for targeted delivery of cargo into different cell organelles but not into lysosomes. In this study, the delivery of 13‐nm gold nanoparticles across the cell membrane followed by targeted localisation into the lysosomes of a mammalian cell line was examined using novel combinations of cell‐penetrating peptides and lysosomal sorting peptides conjugated to the nanoparticles. Using a combination of fluorescence spectroscopy, fluorescence microscopy and transmission electron microscopy techniques, we show that these nanoconjugates were efficiently and selectively delivered into the lysosomes with minimal cytotoxic effects. This novel targeted delivery system may underpin the development of a new strategy for the treatment of lysosomal storage diseases by exploiting the large surface area of nanoparticles to deliver drugs or replacement enzymes directly to the lysosomes. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.