Premium
Time effect on bentazone sorption and degradation in soil
Author(s) -
Boivin Arnaud,
Cherrier Richard,
PerrinGanier Corinne,
Schiavon Michel
Publication year - 2004
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.889
Subject(s) - sorption , loam , soil water , desorption , chemistry , soil science , environmental chemistry , environmental science , residence time (fluid dynamics) , soil type , adsorption , geology , geotechnical engineering , organic chemistry
Previous sorption/desorption batch experiments have indicated that bentazone is weakly sorbed by soils. In addition, field experiments have shown that 4% of the bentazone sprayed can be leached to drainage water. In order to complete bentazone characterisation, we have assessed the effect of time on its behaviour in contrasting soils. In laboratory studies, bentazone was added to three topsoils (sandy, loamy and clay soils). Bentazone degradation, sorption/desorption kinetics and isotherm measurements were carried out at different times. At 160 days after treatment, bentazone mineralisation amounts varied from 2.1% (sandy soil) to 14% (clay soil). The extractable amounts became lower (from 97% after treatment to 12% after 160 days for the clay soil) and a greater number of desorption series was needed to obtain these products. Nevertheless, at the end of the experiments, a small amount of bentazone was still extracted by water. At the same time, bound residues of bentazone reached 65% in clay soil. Statistical analysis indicated effects of both residence time and soil type on bentazone behaviour. Copyright © 2004 Society of Chemical Industry