Premium
Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana
Author(s) -
Qin Xu,
Zhao Xin,
Huang Shuaishuai,
Deng Juan,
Li Xuebing,
Luo Zhibing,
Zhang Yongjun
Publication year - 2021
Publication title -
pest management science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.296
H-Index - 125
eISSN - 1526-4998
pISSN - 1526-498X
DOI - 10.1002/ps.6229
Subject(s) - beauveria bassiana , biology , bassiana , colonization , plant use of endophytic fungi in defense , botany , microbiology and biotechnology , biological pest control
BACKGROUND It has been suggested that entomopathogenic fungi can be introduced into plants as endophytes potentially leading to insect control. Here, we sought to identify specific strains of the insect pathogenic fungus, Beauveria bassiana that would form endophytic associations with tobacco ( Nicotiana benthamiana ) benefitting host plant growth and/or resistance against insect pests and pathogens. RESULTS Tobacco seeds were inoculated with six different B. bassiana strains and entophytic colonization, plant growth, and resistance to pathogens and insect pests were evaluated over a 50 day‐period. Although all the strains could colonize seedlings, 90% seedling colonization was seen for four strains. Fungal cells could be detected in stems more readily than in leaf and root tissues. Colonization by B. bassiana boosted plant growth with an increased photosynthetic rate, chlorophyll content, and stomatal and trichome density seen in fungal treated plants. Tobacco seedlings colonized by specific B. bassiana strains displayed significantly increased tolerance/resistance against bacterial and fungal pathogens. B. bassiana ‐colonized seedlings also displayed higher resistance to aphids ( Myzus persicae ) as compared to untreated controls. Colonization by B. bassiana was shown to trigger both of the salicylic acid (SA) and jasmonate acid (JA) defense pathways, but SA pathway was upregulated much more than JA pathway for some of the tested strains. CONCLUSION Specific strains of B. bassiana can be introduced into host plants as endophytes, resulting in promotion of host plant growth, increased resistance to microbial pathogens, and/or increased resistance to insect pests. © 2020 Society of Chemical Industry